This article was downloaded by:

On: 27 January 2011

Access details: Access Details: Free Access

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-

41 Mortimer Street, London W1T 3JH, UK

Nucleosides, Nucleotides and Nucleic Acids

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713597286

Approaches to New Dideoxynucleosides

Vasu Naira; Greg S. Buengera

^a Department of Chemistry, The University of Iowa Iowa City, Iowa, U. S. A.

To cite this Article Nair, Vasu and Buenger, Greg S.(1991) 'Approaches to New Dideoxynucleosides', Nucleosides, Nucleotides and Nucleic Acids, 10:1,307-310

To link to this Article: DOI: 10.1080/07328319108046466 URL: http://dx.doi.org/10.1080/07328319108046466

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

APPROACHES TO NEW DIDEOXYNUCLEOSIDES

Vasu Nair* and Greg S. Buenger Department of Chemistry, The University of Iowa Iowa City, Iowa 52242, U. S. A.

<u>Abstract</u>. The syntheses of novel analogues of purine dideoxynucleosides of anti-HIV potential are described. The synthetic approach involved strategic modification of both the carbohydrate and base components of natural and synthetic ribonucleosides.

Discovery of the anti-HIV activity of dideoxynucleosides has stimulated considerable interest both in the synthesis of new compounds of this family and in the development of efficient methodologies for their preparation. 1-8 The impetus for most of this work is the expectation that some of these compounds may have anti-HIV activity and/or would be useful as biological probes in the study of both viral and mammalian enzymes. In a program in our laboratory directed at the synthesis of novel dideoxynucleosides with potential anti-HIV activity, we have synthesized a number of novel analogues of purine dideoxynucleosides involving modifications in both the carbohydrate and base moleties.

The major class of compounds investigated can be represented by the generalized structure shown in 2. They were synthesized through multi-step syntheses starting from either quanosine or adenosine (1). Key synthetic

- (a) $(CH_3S)_2$, CH_3CN , hv; (b) TBDMSiCl, DMAP, $(Et)_3N$, DMF, CH_2Cl_2 ;
- (c) (Im) CS, DMF; (d) Bu SnH, AIBN, toluene, A; (e) Et NF, CH CN;
- (f) CS_2 , NaOH, CH_3I , DMSO; (g) H_2 , Pd/C, C_2H_5OH .

Scheme 1

(b-g as above), (h) $PhCH_2ONa$, DMF, Δ . Scheme 2

methodologies used were selective silvilation, radical dideoxygenation, metal-mediated, photochemical and thermal functionalizations, and metal-catalyzed hydrogenolysis. 9-11 The syntheses can be illustrated with two cases, 2-thiomethyl-21,31-dideoxyadenosine (Scheme 1) and 8-hydroxy-21,31-dideoxyadenosine (Scheme 2).

8-Hydroxy-2',3'-dideoxyadenosine, which shows some anti-HIV activity, is very stable to glycosidic bond hydrolysis unlike many other dideoxynucleosides. Spectral data, particularly its high-field 13 C NMR and FTIR, suggest that this molecule exists almost exclusively in the

lactam (urea) form and that its preferred conformation is \underline{syn} (chemical shift difference C2'- C3'= 1 ppm).

Most of the base-modified dideoxyadenosines 2 were either poor substrates for adenosine deaminase (e.g. 8-hydroxy analogue) or were totally resistant to deamination by this enzyme (e.g. 2-iodo, 2-cyano, 2-thiomethyl, 2-ethyl). The 2-substituted dideoxyadenosine analogues were also examined for inhibitor activity against this enzyme and were found to be competitive inhibitors ($K_i = 10^{-4}$ to 10^{-5}).

Approaches to the synthesis of isosteres of 2°,3°-dideoxylnosine involving ring modification (C and N interchange) at the 3, 5 and 7 positions are also being investigated. A representative example is shown in structure 3. The base isostere for the glycosylation reaction was synthesized from 5-azacytosine by reaction with chloroacetaldehyde. 13,14 Differentiation of the structures of the two nucleosides obtained on glycosylation was made through correlation with UV and high-field NMR (NOESY) data.

Acknowledgment. Support of these investigations by the National Institutes of Health (NIAID), the Burroughs Wellcome Company, and the University of Iowa (Faculty Scholar Award to V.N.) is gratefully acknowledged. We thank Dr. Arthur Lyons and Mr. David Purdy for technical assistance.

REFERENCES

- 1. Mitsuya, H.; Broder, S. Proc. Natl. Acad. Sci. U. S. A. 1986, 83, 1911.
- Herdewijn, P.; Pauwels, R.; Baba, M.; Balzarini, J.; De Clercq, E. J. Med. Chem. 1987, 30, 2131.

310 NAIR AND BUENGER

Marquez, V. E.; Tseng, C. K-H.; Mitsuya, H.; Aoki, S.; Kelley, J. A.; Ford, Jr., H.; Roth, J. S.; Broder, S.; Johns, D. G.; Driscoll, J. S. J. Med. Chem. 1990, 33, 978.

- Yarchoan, R.; Mitsuya, H.; Thomas, R. V.; Pluda, J. M.; Hartman, N. R.; Perno, C-F.; Marczyk,; K. S.; Allain, J-P.; Johns, D. G.; Broder, S. <u>Science</u> 1989, 245, 412.
- Haertie, T.; Carrera, C. J.; Wasson, D. B.; Sowers, L. C.; Richman, D. D.; Carson, D. A. <u>J. Biol. Chem.</u> 1988, 263, 5870.
- Balzarini, J.; Pauwels, R.; Baba, M.; Robins, M. J.; Zou, R.; Herdewijn, P.; De Clercq, E. <u>Biochem. Blophys. Res. Commun.</u> 1987, 145, 269.
- 7. Koszalka, G. W.; Broder, S. <u>Proc. Natl. Acad. Sci. U. S. A.</u> 1986, 83, 1911.
- Mansuri, M. M.; Starrett, Jr., J. E.; Wos, J. A.; Tortolani, D. R.; Brodfuehrer, P. R.; Howell, H. G.; Martin, J. C. J. Org. Chem. 1989, 54, 4780.
- Nair, V.; Turner, G. A.; Chamberlain, S. D. J. Am. Chem. Soc. 1987, 109, 7223.
- 10. Nair, V.; Buenger, G. S. J. Am. Chem. Soc. 1989, 111, 8502.
- Chu, C. K.; Bhadti, V. S.; Doboszewski, B.; Gu, Z. P.; Kosugi, Y.;
 Pullaiah, K. C.; Van Roey, P. J. Org. Chem. 1989, 54, 2217.
- 12. Nair, V.; Buenger, G. S. J. Org. Chem. 1990, 55, 3695.
- 13. Nair, V.; Offerman, R. J.; Turner, G. A. J. Org. Chem. 1984, 49, 4021.
- Sattsangi, P. D.; Leonard, N. J.; Frihart, C. R. <u>J. Org. Chem.</u> 1977, 42, 3292.